A First Course in Network Theory Comparing Partitionings

Luce le Gorrec, Philip Knight, Francesca Arrigo

University of Strathclyde, Glasgow

Evaluating Clustering Algorithms

Supervised Learning (Classification) VS Unsupervised Learning (Clustering)

Find the label of a data

Find groups of similar data

Evaluating Clustering Algorithms

Supervised Learning (Classification) VS Unsupervised Learning (Clustering)

Find groups of similar data

Evaluating Clustering Algorithms

Supervised Learning (Classification) VS Unsupervised Learning (Clustering)

Find groups of similar data

To assess the quality of algorithms...

Counting the errors (bad labels).

Evaluating Clustering Algorithms

Supervised Learning (Classification) VS Unsupervised Learning (Clustering)

Find groups of similar data

To assess the quality of algorithms...

Counting the errors (bad labels).
What is an error ?

Evaluating Clustering Algorithms

Supervised Learning (Classification) VS Unsupervised Learning (Clustering)

Find groups of similar data

To assess the quality of algorithms...

Counting the errors (bad labels).
What is an error ?
$\mathcal{C}=\left\{C_{1}, \ldots, C_{p}\right\}, \mathcal{K}=\left\{K_{1}, \ldots, K_{q}\right\}$ are two partitionings on $\{1, \ldots, n\}=V$.

Agreement/Disagreement Table

$$
\mathbf{N}=\left|\begin{array}{ll}
n_{1,1} & n_{1,0} \\
n_{0,1} & n_{0,0}
\end{array}\right|
$$

with
(TruePositives) $n_{1,1}=\mid\left\{(u, v) \in V \times V, u \neq v: \exists i, j\right.$ with $\left.u, v \in C_{i} \cap K_{j}\right\} \mid$
(TrueNegatives) $n_{0,0}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i \neq i^{\prime}, \exists j \neq j^{\prime}\right.$, with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i^{\prime}} \cap K_{j^{\prime}}\end{array}\right\} \right\rvert\,\right.$
(FalseNegatives) $n_{1,0}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i, \exists j \neq j^{\prime}, \quad\right.$ with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i} \cap K_{j^{\prime}}\end{array}\right\} \right\rvert\,\right.$
(FalsePositives) $n_{0,1}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i \neq i^{\prime}, \exists j, \quad\right.$ with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i^{\prime}} \cap K_{j}\end{array}\right\} \right\rvert\,\right.$

Agreement/Disagreement Table

$$
\mathbf{N}=\left\lvert\, \begin{array}{ll|l}
n_{1,1} & n_{1,0} & n_{1,1}+n_{1,0}=\sum_{i=1}^{p}\binom{\left|C_{i}\right|}{2} \\
n_{0,1} & n_{0,0} & n_{0,1}+n_{0,0}=\sum_{i \neq j}\left|C_{i}\right| \times\left|C_{j}\right|
\end{array}\right.
$$

with
(TruePositives) $n_{1,1}=\mid\left\{(u, v) \in V \times V, u \neq v: \exists i, j\right.$ with $\left.u, v \in C_{i} \cap K_{j}\right\} \mid$
(TrueNegatives) $n_{0,0}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i \neq i^{\prime}, \exists j \neq j^{\prime}\right.$, with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i^{\prime}} \cap K_{j^{\prime}}\end{array}\right\} \right\rvert\,\right.$
(FalseNegatives) $n_{1,0}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i, \exists j \neq j^{\prime}\right.$, with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i} \cap K_{j^{\prime}}\end{array}\right\} \right\rvert\,\right.$
(FalsePositives) $n_{0,1}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i \neq i^{\prime}, \exists j, \quad\right.$ with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i^{\prime}} \cap K_{j}\end{array}\right\} \right\rvert\,\right.$

Agreement/Disagreement Table

$$
\mathbf{N}=\left\lvert\, \begin{array}{ll|l}
n_{1,1} & n_{1,0} & n_{1,1}+n_{1,0}=\sum_{i=1}^{p}\binom{\left|C_{i}\right|}{2} \\
n_{0,1} & n_{0,0} & n_{0,1}+n_{0,0}=\sum_{i \neq j}\left|C_{i}\right| \times\left|C_{j}\right|
\end{array}\right.
$$

with
(TruePositives) $n_{1,1}=\mid\left\{(u, v) \in V \times V, u \neq v: \exists i, j\right.$ with $\left.u, v \in C_{i} \cap K_{j}\right\} \mid$
(TrueNegatives) $n_{0,0}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i \neq i^{\prime}, \exists j \neq j^{\prime}\right.$, with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i^{\prime}} \cap K_{j^{\prime}}\end{array}\right\} \right\rvert\,\right.$
(FalseNegatives) $n_{1,0}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i, \exists j \neq j^{\prime}, \quad\right.$ with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i} \cap K_{j^{\prime}}\end{array}\right\} \right\rvert\,\right.$
(FalsePositives) $n_{0,1}=\left\lvert\,\left\{(u, v) \in V \times V, u \neq v: \exists i \neq i^{\prime}, \exists j, \quad\right.$ with $\left.\left\{\begin{array}{l}u \in C_{i} \cap K_{j} \\ v \in C_{i^{\prime}} \cap K_{j}\end{array}\right\} \right\rvert\,\right.$

$$
\text { Rand Index } R I(\mathcal{C}, \mathcal{K})=\frac{n_{1,1}+n_{0,0}}{n_{1,1}+n_{0,0}+n_{1,0}+n_{0,1}}
$$

Confusion Table

$$
\mathbf{T}=\frac{1}{n}\left[\begin{array}{ccc}
\left|C_{1} \cap K_{1}\right| & \ldots & \left|C_{1} \cap K_{q}\right| \\
\vdots & \ddots & \vdots \\
\left|C_{p} \cap K_{1}\right| & \ldots & \left|C_{p} \cap K_{q}\right|
\end{array}\right] \quad\left\{\begin{array}{l}
\sum_{j=1}^{q} \mathbf{T}(i, j)=\frac{\left|C_{i}\right|}{n} \\
\sum_{i=1}^{p} \mathbf{T}(i, j)=\frac{\left|K_{j}\right|}{n}
\end{array}\right.
$$

(1) $\begin{cases}\text { Probability for a node } u \text { to lie in a cluster } C_{i} \in \mathcal{C}: & \operatorname{Pr}\left(u \in C_{i}\right)=\left|C_{i}\right| / n \\ \text { Probability for a node } u \text { to lie in a cluster } K_{j} \in \mathcal{K} . & \operatorname{Pr}\left(u \in K_{j}\right)=\left|K_{j}\right| / n\end{cases}$

Confusion Table

$$
\mathbf{T}=\frac{1}{n}\left[\begin{array}{ccc}
\left|C_{1} \cap K_{1}\right| & \ldots & \left|C_{1} \cap K_{q}\right| \\
\vdots & \ddots & \vdots \\
\left|C_{p} \cap K_{1}\right| & \cdots & \left|C_{p} \cap K_{q}\right|
\end{array}\right] \quad\left\{\begin{array}{l}
\sum_{j=1}^{q} \mathbf{T}(i, j)=\frac{\left|C_{i}\right|}{n} \\
\sum_{i=1}^{p} \mathbf{T}(i, j)=\frac{\left|K_{j}\right|}{n}
\end{array}\right.
$$

(1) $\left\{\begin{array}{l}\text { Probability for a node } u \text { to lie in a cluster } C_{i} \in \mathcal{C}: \quad \operatorname{Pr}\left(u \in C_{i}\right)=\left|C_{i}\right| / n \\ \text { Pr }\end{array}\right.$ Entropy $H(X)$ of a variable X is its uncertainty:

$$
H(X)=-\sum_{x \in \mathcal{X}} \operatorname{Pr}(X=x) \times \log _{2}(\operatorname{Pr}(X=x))
$$

Confusion Table

$$
\mathbf{T}=\frac{1}{n}\left[\begin{array}{ccc}
\left|C_{1} \cap K_{1}\right| & \ldots & \left|C_{1} \cap K_{q}\right| \\
\vdots & \ddots & \vdots \\
\left|C_{p} \cap K_{1}\right| & \ldots & \left|C_{p} \cap K_{q}\right|
\end{array}\right] \quad\left\{\begin{array}{l}
\sum_{j=1}^{q} \mathbf{T}(i, j)=\frac{\left|C_{i}\right|}{n} \\
\sum_{i=1}^{p} \mathbf{T}(i, j)=\frac{\left|K_{j}\right|}{n}
\end{array}\right.
$$

(1) $\left\{\begin{array}{l}\text { Probability for a node } u \text { to lie in a cluster } C_{i} \in \mathcal{C}: \quad \operatorname{Pr}\left(u \in C_{i}\right)=\left|C_{i}\right| / n \\ \text { Pr }\end{array}\right.$ Probability for a node u to lie in a cluster $K_{j} \in \mathcal{K}: \quad \operatorname{Pr}\left(u \in K_{j}\right)=\left|K_{j}\right| / n$
Entropy $H(X)$ of a variable X is its uncertainty:

$$
H(X)=-\sum_{x \in \mathcal{X}} \operatorname{Pr}(X=x) \times \log _{2}(\operatorname{Pr}(X=x))
$$

Mutual Info $\operatorname{MI}(X, Y)$ is the reduction in X uncertainty due to knowing Y :

$$
M I(X, Y)=H(X)-H(X \mid Y)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \operatorname{Pr}(x, y) \log _{2}\left(\frac{\operatorname{Pr}(x, y)}{\operatorname{Pr}(x) \operatorname{Pr}(y)}\right)
$$

Confusion Table

$$
\mathbf{T}=\frac{1}{n}\left[\begin{array}{ccc}
\left|C_{1} \cap K_{1}\right| & \ldots & \left|C_{1} \cap K_{q}\right| \\
\vdots & \ddots & \vdots \\
\left|C_{p} \cap K_{1}\right| & \cdots & \left|C_{p} \cap K_{q}\right|
\end{array}\right] \quad\left\{\begin{array}{l}
\sum_{j=1}^{q} \mathbf{T}(i, j)=\frac{\left|C_{i}\right|}{n} \\
\sum_{i=1}^{p} \mathbf{T}(i, j)=\frac{\left|K_{j}\right|}{n}
\end{array}\right.
$$

(1) $\begin{cases}\text { Probability for a node } u \text { to lie in a cluster } C_{i} \in \mathcal{C}: & \operatorname{Pr}\left(u \in C_{i}\right)=\left|C_{i}\right| / n \\ \text { Probability for a node } u \text { to lie in a cluster } K_{j} \in \mathcal{K} . & \operatorname{Pr}\left(u \in K_{j}\right)=\left|K_{j}\right| / n\end{cases}$

Entropy $H(X)$ of a variable X is its uncertainty:

$$
H(X)=-\sum_{x \in \mathcal{X}} \operatorname{Pr}(X=x) \times \log _{2}(\operatorname{Pr}(X=x)) .
$$

Mutual Info $\operatorname{MI}(X, Y)$ is the reduction in X uncertainty due to knowing Y :

$$
M I(X, Y)=H(X)-H(X \mid Y)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \operatorname{Pr}(x, y) \log _{2}\left(\frac{\operatorname{Pr}(x, y)}{\operatorname{Pr}(x) \operatorname{Pr}(y)}\right)
$$

Using (1) and the confusion table \mathbf{T} :

$$
\operatorname{MI}(\mathcal{C}, \mathcal{K})=\sum_{i=1}^{p} \sum_{j=1}^{q} \mathbf{T}(i, j) \log _{2}\left(\frac{n^{2} \times \mathbf{T}(i, j)}{\left|C_{i}\right| \times\left|K_{j}\right|}\right)
$$

Adjusted for Chance

An index $\operatorname{Ind}(\mathcal{C}, \mathcal{K})$ can be adjusted for chance

$$
\operatorname{Alnd}(\mathcal{C}, \mathcal{K})=\frac{\operatorname{Ind}(\mathcal{C}, \mathcal{K})-\mathbb{E}[\operatorname{Ind}(X, Y)]}{\max (\operatorname{Ind}(X, Y))-\mathbb{E}[\operatorname{Ind}(X, Y)]}
$$

$\Longrightarrow \operatorname{Alnd}(\mathcal{C}, \mathcal{K}) \approx 0$ when \mathcal{C}, \mathcal{K} are independent.

Adjusted for Chance

An index $\operatorname{Ind}(\mathcal{C}, \mathcal{K})$ can be adjusted for chance

$$
\operatorname{Alnd}(\mathcal{C}, \mathcal{K})=\frac{\operatorname{Ind}(\mathcal{C}, \mathcal{K})-\mathbb{E}[\operatorname{Ind}(X, Y)]}{\max (\operatorname{Ind}(X, Y))-\mathbb{E}[\operatorname{Ind}(X, Y)]}
$$

$\Longrightarrow \operatorname{Alnd}(\mathcal{C}, \mathcal{K}) \approx 0$ when \mathcal{C}, \mathcal{K} are independent.
\triangle Requires to select random model.
X Not always easy to derive, and can be computationally awful.

$$
E[\mathrm{MI}(U, V)]=\sum_{i=1}^{|U|} \sum_{j=1}^{|V|} \sum_{n_{i j}=\left(a_{i}+b_{j}-N\right)^{+}}^{\min \left(a_{i}, b_{j}\right)} \frac{n_{i j}}{N} \log \left(\frac{N . n_{i j}}{a_{i} b_{j}}\right) \frac{a_{i}!b_{j}!\left(N-a_{i}\right)!\left(N-b_{j}\right)!}{N!n_{i j}!\left(a_{i}-n_{i j}\right)!\left(b_{j}-n_{i j}\right)!\left(N-a_{i}-b_{j}+n_{i j}\right)!}
$$

Adjusted for Chance

An index $\operatorname{Ind}(\mathcal{C}, \mathcal{K})$ can be adjusted for chance

$$
\operatorname{Alnd}(\mathcal{C}, \mathcal{K})=\frac{\operatorname{Ind}(\mathcal{C}, \mathcal{K})-\mathbb{E}[\operatorname{Ind}(X, Y)]}{\max (\operatorname{Ind}(X, Y))-\mathbb{E}[\operatorname{Ind}(X, Y)]}
$$

$\Longrightarrow \operatorname{Alnd}(\mathcal{C}, \mathcal{K}) \approx 0$ when \mathcal{C}, \mathcal{K} are independent.
\triangle Requires to select random model.
X Not always easy to derive, and can be computationally awful.

For the Rand Index, choice of the Permutation Model gives:

$$
\operatorname{ARI}(\mathcal{C}, \mathcal{K})=\frac{2\left(n_{0,0} n_{1,1}-n_{0,1} n_{1,0}\right)}{\left(n_{0,0}+n_{0,1}\right)\left(n_{1,1}+n_{0,1}\right)+\left(n_{0,0}+n_{1,0}\right)\left(n_{1,1}+n_{1,0}\right)}
$$

