Revisions Complex Network Theory

Figure 1: A Graph G = (V, E).

1 Partitioning a Graph via Spectral Theory

- 1. Write the Laplacian matrix of the graph G = (V, E) from Figure 1.
- 2. One of the following vectors is the Fiedler vector of G. Which one ? Justify your answer.

- 3. Recall the formula of the isoperimetric ratio.
- 4. Apply the Sweep Cut method to G to partition its set of nodes (detail the steps and the computations).
- 5. Does the resulting partitioning verify the Cheeger's inequalities ? Justify your answer.

2 Comparing Partitionings

We denote by

$$\begin{aligned} \mathcal{P} = & \left\{ \{1, 2, 3, 4\}, \{5, 6, 7\}, \{8, 9, 10\} \right\}, \\ \mathcal{C} = & \left\{ \{1, 2, 3, 4\}, \{5, 6, 7, 8, 9, 10\} \right\}, \\ \mathcal{K} = & \left\{ \{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}, \{9, 10\} \right\}, \end{aligned}$$

three partitionings obtained on the graph G = (V, E) from Figure 1.

- 1. Write the agreement/disagreement tables and the confusion matrices of \mathcal{P} and \mathcal{C} in one hand, and \mathcal{P} and \mathcal{K} on the other hand.
- 2. Compute the ARI and the MI between \mathcal{P} and \mathcal{C} on one hand, and between \mathcal{P} and \mathcal{K} on the other hand. Discuss the results.
- 3. Compute the modularity and the normalised cuts of $\mathcal{P}, \mathcal{C}, \mathcal{K}$. Discuss the results.