Revisions

Complex Network Theory

$$
24 / 01 / 2022
$$

Figure 1: A Graph $G=(V, E)$.

1 Partitioning a Graph via Spectral Theory

1. Write the Laplacian matrix of the graph $G=(V, E)$ from Figure 1 .
2. One of the following vectors is the Fiedler vector of G. Which one? Justify your answer.

$$
(a): v_{1}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \quad(b): v_{2}=\left[\begin{array}{c}
-1 \\
-\sqrt{2} \\
-1 \\
-\sqrt{2} \\
\sqrt{2}-1 \\
1 \\
1 \\
1 \\
\sqrt{2}-1 \\
1
\end{array}\right], \quad(c): v_{3}=\left[\begin{array}{c}
1 \\
6 / 5 \\
1 \\
6 / 5 \\
4 / 15 \\
0 \\
0 \\
-1 \\
-4 / 15 \\
-1
\end{array}\right], \quad(d): v_{4}=\left[\begin{array}{c}
6 \\
-4 \\
6 \\
-4 \\
-4 \\
1 \\
1 \\
1 \\
-4 \\
1
\end{array}\right]
$$

3. Recall the formula of the isoperimetric ratio.
4. Apply the Sweep Cut method to G to partition its set of nodes (detail the steps and the computations).
5. Does the resulting partitioning verify the Cheeger's inequalities? Justify your answer.

2 Comparing Partitionings

We denote by

$$
\begin{aligned}
\mathcal{P} & =\{\{1,2,3,4\},\{5,6,7\},\{8,9,10\}\} \\
\mathcal{C} & =\{\{1,2,3,4\},\{5,6,7,8,9,10\}\} \\
\mathcal{K} & =\{\{1,2\},\{3,4\},\{5,6\},\{7,8\},\{9,10\}\}
\end{aligned}
$$

three partitionings obtained on the graph $G=(V, E)$ from Figure 1 .

1. Write the agreement/disagreement tables and the confusion matrices of \mathcal{P} and \mathcal{C} in one hand, and \mathcal{P} and \mathcal{K} on the other hand.
2. Compute the ARI and the MI between \mathcal{P} and \mathcal{C} on one hand, and between \mathcal{P} and \mathcal{K} on the other hand. Discuss the results.
3. Compute the modularity and the normalised cuts of $\mathcal{P}, \mathcal{C}, \mathcal{K}$. Discuss the results.
