# Homework 1 - Networks to Represent Differential Systems and Graph Laplacians 

To return by 8am Monday 6 December 2021

## 1 One Dimension

In this exercise, we investigate the Laplacian of an application $u:[a, b] \rightarrow \mathbb{R}$ defined on the segment $[a, b]$ drawn in Figure 1.


Figure 1: The segment $[a, b]$ regularly discretised with a discretising step $h$.
We furthermore assume that $u$ is a twice differentiable function.

1. Recall how to get the formula of the centred approximation obtained by finite differences of the Laplacian of $u$ at a point $x=a+k \times h$, with $k \in\{1, \ldots, n\}$. We will denote this approximation by $u_{L}^{h}(x)$ in the following.
2. Propose a representation as a simple graph of the discretised segment $[a, b]$ from Figure 1, and provide its adjacency matrix $\mathbf{A}$.
3. We denote by $\mathbf{u}, \mathbf{u}_{L}^{h} \in \mathbb{R}^{n}$ the two vectors such that:

$$
\forall k \in\{1, \ldots, n\},\left\{\begin{array}{l}
\mathbf{u}(k)=u(a+k \times h) \\
\mathbf{u}_{L}^{h}(k)=u_{L}^{h}(a+k \times h)
\end{array}\right.
$$

Using basic linear algebra, derive a formula to express $\mathbf{u}_{L}^{h}$ involving $\mathbf{A}, \mathbf{D}=\operatorname{diag}(\mathbf{A 1}), h$ and $\mathbf{u}$.

### 1.1 Hypothesis and Notations

- We can assume that $u(a)=u(b)=0$.
- Given a vector $\mathbf{v} \in \mathbb{R}^{n}$, we denote by $\operatorname{diag}(\mathbf{v})$ the diagonal matrix whose element $(i, i)$ is equal to $\mathbf{v}(i)$.


## 2 Two Dimensions

We now investigate the Laplacian of an application $u:[a, b] \times[a, b] \mapsto \mathbb{R}$, defined on the square drawn in Figure 2


Figure 2: A square grid $(a, a)-(a, b)-(b, b)-(b, a)$, with $b=a+(n+1) \times h$, discretised along $x$-axis and $y$-axis with a discretising step $h$.

As previously, $u$ is assumed to be a twice differentiable function.

1. Recall how to get the formula of the centred approximation obtained by finite differences of the Laplacian of $u$ at a point $(x, y)=(a+p \times h, a+q \times h)$, with $p, q \in\{1, \ldots, n\}$.
2. Propose a representation of the grid from the Figure 2 as a simple graph. Write its adjacency matrix A for $n=3$. Write a Matlab function that returns the adjacency matrix of such a grid, provided $n$.
3. Similarly to what you have done for the one dimension problem, derive a matrix-vector-product formula to express the approximate Laplacian of $u$ at points on the grid.

### 2.1 Hypothesis

- We can assume that $u(t, a)=u(a, t)=u(t, b)=u(b, t)=0, \forall t \in[a, b]$.


## 3 Less Regular Grid

We finally investigate the Laplacian of a twice differentiable application $u:[a, b] \times[a, b] \mapsto \mathbb{R}$, defined on the rectangle drawn in Figure 2.


Figure 3: A grid $(a, a)-(a, b)-(b, b)-(b, a)$, with $b=a+(n+1) \times h=a+(m+1) \times \ell$, discretised along $x$-axis with a discretising step $h$, and along $y$-axis with a discretising step $\ell$.

1. Provide the formula of the centred approximation obtained by finite differences of the Laplacian of $u$ at a point $(x, y)=(a+p \times h, a+q \times \ell)$, with $(p, q) \in\{1, \ldots, n\} \times\{1, \ldots, m\}$.
2. How should we modify the graph derived for the regular grid to have a formula that resembles

$$
\mathbf{u}_{L}^{h}=\frac{1}{h^{2}}(\mathbf{A}-\mathbf{D}) \mathbf{u} ?
$$

### 3.1 Tips

- The graph that represents this grid is not simple.


## 4 Graph Laplacian

Definition Given a simple graph $G=(V, E)$, the matrix $\mathbf{L}=\mathbf{D}-\mathbf{A}$, with $\mathbf{D}=\operatorname{diag}(\mathbf{A} \mathbf{1})$, is called the Laplacian of $G$.


Figure 4: A simple graph.
Given the graph $H=\left(V_{H}, E_{H}\right)$ illustrated in Figure 4

1. Write $H$ 's incidence matrix $\mathbf{B}_{\mathcal{S}}$ by considering that $H$ is undirected. Then write $H$ 's incidence matrix $\mathbf{B}$ by considering that $H$ is directed ${ }^{1}$

[^0]2. Derive the two formulae that link the matrices $\mathbf{B}_{\mathcal{S}} \mathbf{B}_{\mathcal{S}}^{T}$ and $\mathbf{B B} \mathbf{B}^{T}$ to the Laplacian of $H$. Prove these formulae for any simple graph.
3. Observe that, by assigning a random direction to $H$ 's edges, and denoting by $\mathbf{B}_{\mathcal{D}}$ the incidence matrix of the directed graph thus obtained, one gets $\mathbf{B}_{\mathcal{D}} \mathbf{B}_{\mathcal{D}}^{T}$ that equals H's Laplacian. Prove this result for any simple graph.
4. How would you extend the formula of Question 3. to undirected, anti-reflexive, but weighted graph ?


[^0]:    ${ }^{1}$ These incidence matrices correspond to the matrice d'incidence sommet-arêre and the matrice d'incidence sommet-arc you may have met in the Théorie des Graphes course.

