Homework 2 – Spectral Graph Multipartitioning

To return by 8am Monday 13 December 2021

In the previous Lab, Spectral Graph Theory was used to partition a graph into 2 subsets. In this homework, the focus will be on extending this to partitioning a graph into more than two blocks. It has been observed in the 2 block case that, when the adjacency matrix exhibits a block structure, the Fiedler vector has a nearly staircase pattern. That is, coordinates of this vector corresponding to nodes from a same block have about the same value. This is a perturbation of the perfect situation in which the graph is composed of 2 connected components, in which the Fiedler vector is perfectly staircase. It remains true for graphs with more than two connected subgraphs, as stated in Theorem 1.

Theorem 1. Let $\mathbf{L} \in \mathbb{R}^{n \times n}$ be the Laplacian of some anti-reflexive and undirected graph G, which exhibits k connected components denoted by $C_1, C_2, ..., C_k$. Thus, $\forall \mathbf{x} \in \mathbb{R}^n$, we have

 $\mathbf{L}\mathbf{x} = 0 \iff \exists \alpha_1, ..., \alpha_k \in \mathbb{R} : \forall i \in \{1, ..., n\}, i \in C_t \implies \mathbf{x}(i) = \alpha_t.$

Exercise 1. Prove Theorem 1.

Exercise 2. One can generate a random graph having several blocks to observe that the eigenvectors associated with smallest eigenvalues have a nearly staircase pattern.

- 1. Implement a Matlab function that returns the adjacency matrix of a random simple graph composed of k blocks of 500 nodes. Two nodes within a same block have a probability p_{in} to be linked, while two nodes from different blocks have a probability p_{out} to be linked. The values of k, p_{in} and p_{out} are input arguments of the function¹. In lines 2 and 3, why is the vector associated with λ_1 left out?
- 2. Use this function to build the adjacency matrix of a graph with 4 blocks, such that $p_{in} = 0.05$ and $p_{out} = 0.005$.
- 3. Denoting by $\mathbf{L} \in \mathbb{R}^{2000 \times 2000}$ the Laplacian of this random graph, and by $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{2000}$ its eigenvalues, observe that the eigenvectors associated with λ_2 , λ_3 , and λ_4 have a nearly staircase pattern.

From this observation, algorithms have been proposed to partition the nodes into k blocks. You will implement one of them

Exercise 3. Algorithm 1 is called the Spectral Clustering Algorithm. The vectors \mathbf{v}_i s at line 4 are sometimes called *node embbedimgs*, that is, vector representation of graph nodes.

Algorithm 1: Spectral Clustering Algorithm Data: A graph represented by its adj. matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, The number of clusters k. Result: A vector $\mathbf{y} \in \mathbb{N}^n$ s.t. $\mathbf{y}(i) = t \iff$ node i belongs to cluster t. 1 $\mathbf{L} \leftarrow$ Laplacian of \mathbf{A} ; 2 $\mathbf{x}_t \leftarrow$ eigenvector associated with λ_t , for t = 2, ..., k; 3 $\mathbf{X} \leftarrow [\mathbf{x}_2 \dots \mathbf{x}_k]$; 4 Apply kmeans to partition $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ onto k clusters $\{C_1, ..., C_k\}$, with \mathbf{v}_i the *i*th row of \mathbf{X} ; 5 $\mathbf{y} \leftarrow \mathbf{0} \in \mathbb{R}^n$; 6 for $i=1:n \operatorname{do}$ 7 $| \mathbf{y}(i) \leftarrow t \in \{1, ..., k\} : \mathbf{v}_i \in C_t$ 8 end

- 1. Implement this algorithm, using the already implemented kmeans function from Matlab.
- 2. Within the algorithm function, implement the visualisation of node embeddings in 2D and 3D (when possible), by truncating the embeddings coordinates.
- 3. Observe and comment the output vector \mathbf{y} for different values of k, p_{in} and p_{out} .

Exercise 4. The graphs used to test the method do not resemble the networks one can meet in real life. Graphs generated using the so-called LFR benchmark² are supposed to highlight some features similar to those from real-world networks. The mat files LFR_Mu03 and LFR_Mu04 contain graphs generated using the LFR benchmark.

¹You can use the code you derived from Q9 of the Lab. ²https://www.santofortunato.net/resources

1. Try to apply the Spectral Clustering Algorithm on these networks. What is the issue? What do you propose to circumvent it?

The vectors **cties** in both **mat** files contain the underlying block structures of the graphs. Namely, cties(i, 2) = k means that node *i* belongs to block *k*. This should help you to correctly set up the Spectral Clustering Algorithm.

2 Apply the correctly set up algorithm on these two graphs and observe the output \mathbf{y} . Comment the results (e.g. which graph is better partitioned).