A First Course in Network Theory Spectral Graph Partitioning

Luce le Gorrec, Philip Knight, Francesca Arrigo

University of Strathclyde, Glasgow

Graph Partitioning

Preliminaries Each graph $G=(V, E, \omega)$ is non-directed, anti-reflexive, and with $\omega: E \rightarrow \mathbb{R}_{+}$. Also, $\forall u, v \in V, u \sim v$ means that $\{u, v\} \in E$.

What ?
Partitioning a graph $G=(V, E, \omega) \Longleftrightarrow$ Partitioning its vertex set V.

Graph Partitioning

Preliminaries Each graph $G=(V, E, \omega)$ is non-directed, anti-reflexive, and with $\omega: E \rightarrow \mathbb{R}_{+}$. Also, $\forall u, v \in V, u \sim v$ means that $\{u, v\} \in E$.

What ?
Partitioning a graph $G=(V, E, \omega) \Longleftrightarrow$ Partitioning its vertex set V.

What for ?

- Efficiently solving PDEs,
- Circuit boards in VLSI,
- Communities in social networks,
- Parallel/distributed computation,
- Etc.

Graph Partitioning

Preliminaries Each graph $G=(V, E, \omega)$ is non-directed, anti-reflexive, and with $\omega: E \rightarrow \mathbb{R}_{+}$. Also, $\forall u, v \in V, u \sim v$ means that $\{u, v\} \in E$.

What ?
Partitioning a graph $G=(V, E, \omega) \Longleftrightarrow$ Partitioning its vertex set V.

What for ?

- Efficiently solving PDEs,
- Circuit boards in VLSI,
- Communities in social networks,
- Parallel/distributed computation,
- Etc.

Graph Partitioning

Preliminaries Each graph $G=(V, E, \omega)$ is non-directed, anti-reflexive, and with $\omega: E \rightarrow \mathbb{R}_{+}$. Also, $\forall u, v \in V, u \sim v$ means that $\{u, v\} \in E$.

What ?
Partitioning a graph $G=(V, E, \omega) \Longleftrightarrow$ Partitioning its vertex set V.

What for ?

- Efficiently solving PDEs,
- Circuit boards in VLSI,
- Communities in social networks,
- Parallel/distributed computation,
- Etc.

Graph Partitioning

Preliminaries Each graph $G=(V, E, \omega)$ is non-directed, anti-reflexive, and with $\omega: E \rightarrow \mathbb{R}_{+}$. Also, $\forall u, v \in V, u \sim v$ means that $\{u, v\} \in E$.

What ?
Partitioning a graph $G=(V, E, \omega) \Longleftrightarrow$ Partitioning its vertex set V.

What for ?

- Efficiently solving PDEs,
- Circuit boards in VLSI,
- Communities in social networks,
- Parallel/distributed computation,
- Etc.

Graph Partitioning

Preliminaries Each graph $G=(V, E, \omega)$ is non-directed, anti-reflexive, and with $\omega: E \rightarrow \mathbb{R}_{+}$. Also, $\forall u, v \in V, u \sim v$ means that $\{u, v\} \in E$.

What ?

Partitioning a graph $G=(V, E, \omega) \Longleftrightarrow$ Partitioning its vertex set V.

What for ?

- Efficiently solving PDEs,
- Circuit boards in VLSI,
- Communities in social networks,
- Parallel/distributed computation,
- Etc.

Graph Partitioning

Preliminaries Each graph $G=(V, E, \omega)$ is non-directed, anti-reflexive, and with $\omega: E \rightarrow \mathbb{R}_{+}$. Also, $\forall u, v \in V, u \sim v$ means that $\{u, v\} \in E$.

What ?

Partitioning a graph $G=(V, E, \omega) \Longleftrightarrow$ Partitioning its vertex set V.

What for ?

- Efficiently solving PDEs,
- Circuit boards in VLSI,
- Communities in social networks,
- Parallel/distributed computation,
- Etc.

Graph Partitioning - Cut

Roughly, partitioning a graph means finding the "almost disconnected" subsets of nodes within the network.
Definition Given $S \subset V$, the weight of the cut induced by S is

$$
\operatorname{Cut}(S)=\sum_{i \in S} \sum_{\substack{j \notin S: \\ i \sim j}} \omega(i, j)
$$

Examples

Graph Partitioning - Cut

Roughly, partitioning a graph means finding the "almost disconnected" subsets of nodes within the network.
Definition Given $S \subset V$, the weight of the cut induced by S is

$$
\operatorname{Cut}(S)=\sum_{i \in S} \sum_{\substack{j \neq S: \\ i \sim j}} \omega(i, j) .
$$

Examples

\Longrightarrow When partitioning graphs, one wants to find a non trivial set S that induces a lightly weighted cut.

The Graph Laplacian - Relation with the Cut

Definition Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ the adjacency matrix of G, and $\mathbf{D}=\operatorname{diag}(\mathbf{A} 1)$ its degree matrix, the Laplacian of G is the matrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ such that $\mathbf{L}=\mathbf{D}-\mathbf{A}$.

The Graph Laplacian - Relation with the Cut

Definition Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ the adjacency matrix of G, and $\mathbf{D}=\operatorname{diag}(\mathbf{A} 1)$ its degree matrix, the Laplacian of G is the matrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ such that $\mathbf{L}=\mathbf{D}-\mathbf{A}$. Property $\forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{\top} \mathbf{L x}=\sum_{i \sim j} \omega(i, j)\left(x_{i}-x_{j}\right)^{2}$.

Proof

The Graph Laplacian - Relation with the Cut

Definition Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ the adjacency matrix of G, and $\mathbf{D}=\operatorname{diag}(\mathbf{A} \mathbf{1})$ its degree matrix, the Laplacian of G is the matrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ such that $\mathbf{L}=\mathbf{D}-\mathbf{A}$. Property $\forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{\top} \mathbf{L x}=\sum_{i \sim j} \omega(i, j)\left(x_{i}-x_{j}\right)^{2}$.
Proof
Corollary Given $S \subset V$, and $\mathbf{x} \in\{-1,1\}^{n}$ s.t. $\mathbf{x}(i)=\left\{\begin{array}{l}1 \text { if } i \in S, \\ -1 \text { else },\end{array}\right.$ namely the signed indicator of S, thus

$$
\mathbf{x}^{\top} \mathbf{L x}=4 \times \operatorname{Cut}(S) .
$$

Proof Exercise

The Graph Laplacian - Relation with the Cut

Definition Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ the adjacency matrix of G, and $\mathbf{D}=\operatorname{diag}(\mathbf{A} \mathbf{1})$ its degree matrix, the Laplacian of G is the matrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ such that $\mathbf{L}=\mathbf{D}-\mathbf{A}$.
Property $\forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x}^{\top} \mathbf{L x}=\sum_{i \sim j} \omega(i, j)\left(x_{i}-x_{j}\right)^{2}$.
Proof
Corollary Given $S \subset V$, and $\mathbf{x} \in\{-1,1\}^{n}$ s.t. $\mathbf{x}(i)=\left\{\begin{array}{l}1 \text { if } i \in S, \\ -1 \text { else },\end{array}\right.$, namely the signed indicator of S, thus

$$
\mathbf{x}^{\top} \mathbf{L x}=4 \times \operatorname{Cut}(S)
$$

Proof Exercise

The Balanced Cut Problem Given this corollary, finding the signed indicator of $S \subset V$ s.t. $|S|=n / 2$ which induces a cut of minimum weight, can be written:

$$
\begin{aligned}
\operatorname{minimise} & \mathbf{x}^{T} \mathbf{L x} \\
\text { subject to } & \mathbf{x} \in\{-1,1\}^{n}, \\
\text { and } & \mathbf{1}^{T} \mathbf{x}=0
\end{aligned}
$$

The Graph Laplacian - Bounding the Cut

Property The Laplacian \mathbf{L} is positive semi definite, and $\operatorname{dim}(\operatorname{Ker}(\mathbf{L}))$ is the number of connected components in G.
Notation The sorted eigenvalues of \mathbf{L}, counted with multiplicity, are denoted $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.
Proof

The Graph Laplacian - Bounding the Cut

Property The Laplacian \mathbf{L} is positive semi definite, and $\operatorname{dim}(\operatorname{Ker}(\mathbf{L}))$ is the number of connected components in G.
Notation The sorted eigenvalues of \mathbf{L}, counted with multiplicity, are denoted $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.
Proof
Property Given $S \subset V:|S|=n / 2$, thus

$$
\lambda_{2} \times n / 4 \leq \operatorname{Cut}(S) \leq \lambda_{n} \times n / 4 .
$$

Proof Exercise

The Graph Laplacian - Bounding the Cut

Property The Laplacian \mathbf{L} is positive semi definite, and $\operatorname{dim}(\operatorname{Ker}(\mathbf{L}))$ is the number of connected components in G.
Notation The sorted eigenvalues of \mathbf{L}, counted with multiplicity, are denoted $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.
Proof
Property Given $S \subset V:|S|=n / 2$, thus

$$
\lambda_{2} \times n / 4 \leq \operatorname{Cut}(S) \leq \lambda_{n} \times n / 4 .
$$

Proof Exercise

Definition The eigenvalue λ_{2} is called the algebraic connectivity of G.
Flavour The algebraic connectivity gives an indication about how close to disconnected the graph is.

Visual Illustration

Solving the Balanced Cut Problem

The Balanced Cut Problem of finding $S \subset V$ s.t. $|S|=n / 2$ which induces a cut of minimum weight is equivalent to solve

$$
\begin{aligned}
\operatorname{minimise} & \mathbf{x}^{T} \mathbf{L x} \\
\text { subject to } & \mathbf{x} \in\{-1,1\}^{n}, \\
\text { and } & \mathbf{1}^{T} \mathbf{x}=0
\end{aligned}
$$

which is NP-complete.

Solving the Balanced Cut Problem

The Balanced Cut Problem of finding $S \subset V$ s.t. $|S|=n / 2$ which induces a cut of minimum weight is equivalent to solve

$$
\begin{aligned}
\operatorname{minimise} & \mathbf{x}^{T} \mathbf{L x} \\
\text { subject to } & \mathbf{x} \in\{-1,1\}^{n}, \\
\text { and } & \mathbf{1}^{T} \mathbf{x}=0
\end{aligned}
$$

which is NP-complete.
\Longrightarrow Relaxing the 1st constraint: $\mathbf{x} \in\{-1,1\}^{n} \rightsquigarrow \mathbf{x}^{T} \mathbf{x}=n$.

Solving the Balanced Cut Problem

The Balanced Cut Problem of finding $S \subset V$ s.t. $|S|=n / 2$ which induces a cut of minimum weight is equivalent to solve

$$
\begin{aligned}
\operatorname{minimise} & \mathbf{x}^{T} \mathbf{L x} \\
\text { subject to } & \mathbf{x} \in\{-1,1\}^{n}, \\
\text { and } & \mathbf{1}^{T} \mathbf{x}=0
\end{aligned}
$$

which is NP-complete.
\Longrightarrow Relaxing the 1st constraint: $\mathbf{x} \in\{-1,1\}^{n} \rightsquigarrow \mathbf{x}^{T} \mathbf{x}=n$.
Property An eigenvector of norm \sqrt{n} associated with λ_{2} is always a solution of the Relaxed Balanced Cut Problem:

$$
\begin{aligned}
\operatorname{minimise} & \mathbf{x}^{T} \mathbf{L} \mathbf{x} \\
\text { subject to } & \mathbf{x}^{T} \mathbf{x}=n, \\
\text { and } & \mathbf{1}^{T} \mathbf{x}=0 .
\end{aligned}
$$

Proof Exercise
Definition Such a vector is called the Fiedler vector, denoted by \mathbf{x}_{2}.

Balanced Cut Problem - Building S from the Fiedler vector

 Median Threshold Find x_{m} the median of \mathbf{x}_{2}, and do$$
S=\left\{i \in V: \mathbf{x}(i)>x_{m}\right\} \cup\left\{\text { half of the } i^{\prime} s: \mathbf{x}_{2}(i)=x_{m}\right\}
$$

Zero Threshold Do $S=\left\{i \in V: \mathbf{x}_{2}(i)>0\right\}$
Guarantees about the connectivity of resulting subgraphs:

- Denoting $\bar{S}=V \backslash S, G_{S}=(\bar{S}, E \cap(\bar{S} \times \bar{S}))$ is connected.
- If $\mathbf{x}_{2}(i) \neq 0, \forall i$, then $G_{S}=(S, E \cap(S \times S))$ is also connected.

Sweep Cut Method

```
[~,inds] = sort( (x2);
for }k=1:n\mathrm{ do
    \varphicrt }\leftarrow\varphi(inds(1:k))
    if }\mp@subsup{\varphi}{crt}{}<\mp@subsup{\varphi}{0}{}\mathrm{ then
        k}<<k;\mp@subsup{\varphi}{0}{}\leftarrow\mp@subsup{\varphi}{crt}{}
        end if
end for
return S = inds(1: k k );
```

where

Question: Why using φ (and not Cut)?

Balanced Cut Problem - Building S from the Fiedler vector

 Median Threshold Find x_{m} the median of x_{2}, and do$$
S=\left\{i \in V: \mathbf{x}(i)>x_{m}\right\} \cup\left\{\text { half of the } i^{\prime} s: \mathbf{x}_{2}(i)=x_{m}\right\}
$$

Zero Threshold Do $S=\left\{i \in V: \mathbf{x}_{2}(i)>0\right\}$ Guarantees about the connectivity of resulting subgraphs:

- Denoting $\bar{S}=V \backslash S, G_{\bar{S}}=(\bar{S}, E \cap(\bar{S} \times \bar{S}))$ is connected.
- If $\mathbf{x}_{2}(i) \neq 0, \forall i$, then $G_{S}=(S, E \cap(S \times S))$ is also connected.

Balanced Cut Problem - Building S from the Fiedler vector

Median Threshold Find x_{m} the median of x_{2}, and do

$$
S=\left\{i \in V: \mathbf{x}(i)>x_{m}\right\} \cup\left\{\text { half of the } i^{\prime} s: \mathbf{x}_{2}(i)=x_{m}\right\}
$$

Zero Threshold Do $S=\left\{i \in V: \mathbf{x}_{2}(i)>0\right\}$
Guarantees about the connectivity of resulting subgraphs:

- Denoting $\bar{S}=V \backslash S, G_{S}=(\bar{S}, E \cap(\bar{S} \times \bar{S}))$ is connected.
- If $x_{2}(i) \neq 0, \forall i$, then $G_{S}=(S, E \cap(S \times S))$ is also connected.

Sweep Cut Method

$$
\begin{aligned}
& {[\sim, i n d s]=\operatorname{sort}\left(\mathbf{x}_{2}\right) ;} \\
& k_{0} \leftarrow-1 ; \varphi_{0} \leftarrow \infty ; \\
& \text { for } k=1: n \text { do } \\
& \qquad \varphi_{c r t} \leftarrow \varphi(i n d s(1: k)) \text {; } \\
& \quad \text { if } \varphi_{c r t}<\varphi_{0} \text { then } \\
& \quad k_{0} \leftarrow k ; \varphi_{0} \leftarrow \varphi_{c r t} ; \\
& \text { end if } \\
& \text { end for } \\
& \text { return } S=\operatorname{inds}\left(1: k_{0}\right) \text {; }
\end{aligned}
$$

where

$$
\varphi(S)=\frac{\operatorname{Cut}(S)}{\min (|S|, n-|S|)} .
$$

Question: Why using φ (and not Cut)?

The Cheeger's Inequality

Definition Given $S \subset V$, we denote by \mathbf{S} 's isoperimetric ratio the scalar

$$
\varphi(S)=\frac{\operatorname{Cut}(S)}{\min (|S|, n-|S|)} .
$$

The Cheeger's Inequality

Definition Given $S \subset V$, we denote by \mathbf{S} 's isoperimetric ratio the scalar

$$
\varphi(S)=\frac{\operatorname{Cut}(S)}{\min (|S|, n-|S|)}
$$

Theorem The following bounds for the isoperimetric ratio are called the Cheeger's inequality:

$$
\frac{\lambda_{2}}{2} \leq \min _{S \subset V} \varphi(S) \leq \sqrt{2 \lambda_{2} d_{\max }^{\omega}}
$$

Proof

The Cheeger's Inequality

Definition Given $S \subset V$, we denote by \mathbf{S} 's isoperimetric ratio the scalar

$$
\varphi(S)=\frac{\operatorname{Cut}(S)}{\min (|S|, n-|S|)} .
$$

Theorem The following bounds for the isoperimetric ratio are called the Cheeger's inequality:

$$
\frac{\lambda_{2}}{2} \leq \min _{S \subset V} \varphi(S) \leq \sqrt{2 \lambda_{2} d_{\max }^{\omega}}
$$

Proof

Corollary The subset $S^{*} \subset V$ returned by the sweep cut method verifies the Cheeger's inequality: $\frac{\lambda_{2}}{2} \leq \varphi\left(S^{*}\right) \leq \sqrt{2 \lambda_{2} d_{\max }^{\omega}}$.

The Cheeger's Inequality

Definition Given $S \subset V$, we denote by \mathbf{S} 's isoperimetric ratio the scalar

$$
\varphi(S)=\frac{\operatorname{Cut}(S)}{\min (|S|, n-|S|)} .
$$

Theorem The following bounds for the isoperimetric ratio are called the Cheeger's inequality:

$$
\frac{\lambda_{2}}{2} \leq \min _{S \subset V} \varphi(S) \leq \sqrt{2 \lambda_{2} d_{\max }^{\omega}}
$$

Proof

Corollary The subset $S^{*} \subset V$ returned by the sweep cut method verifies the Cheeger's inequality: $\frac{\lambda_{2}}{2} \leq \varphi\left(S^{*}\right) \leq \sqrt{2 \lambda_{2} d_{\max }^{\omega}}$.
$\underline{\text { Property }}$ The isoperimetric ratio of S^{*} is at most $2 \times \sqrt{\min _{S \subset V} \varphi(S) d_{\max }^{\omega}}$.
Proof Exercise

Take Home Messages

- Partitioning a graph onto two balanced ${ }^{1}$ subsets, such that the cut is minimised, is a NP-complete problem.
- If we relax the discrete optimisation problem into a continuous one, the solution is the Fiedler vector, i.e. the eigenvector of the Laplacian associated with the algebraic connectivity (2nd smallest eigenvalue).
- The isoperimetric ratio, that measures the consistency of a partitioning, has its minimum bounded by two inequalities that involve the algebraic connectivity. These are called the Cheeger's inequality.
- The cut obtained by applying the Sweep Cut Method to the Fiedler vector, also verifies the Cheeger's inequality. Its isoperimetric ratio has an upper bound that depends on the optimal solution.

[^0]
[^0]: ${ }^{1}$ The problem remains NP-complete when imbalance is allowed.

