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Graph Partitioning

Preliminaries Each graph G = (V ,E , ω) is non-directed, anti-reflexive, and

with ω : E → R+. Also, ∀u, v ∈ V , u ∼ v means that {u, v} ∈ E.

What ?
Partitioning a graph G = (V ,E , ω) ⇐⇒ Partitioning its vertex set V .

What for ?

Efficiently solving PDEs,

Circuit boards in VLSI,

Communities in social networks,

Parallel/distributed computation,

Etc.
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Graph Partitioning – Cut
Roughly, partitioning a graph means finding the “almost disconnected”
subsets of nodes within the network.
Definition Given S ⊂ V , the weight of the cut induced by S is

Cut(S) =
∑
i∈S

∑
j /∈S :
i∼j

ω(i , j).

Examples

=⇒ When partitioning graphs, one wants to find a non trivial set S that
induces a lightly weighted cut.
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The Graph Laplacian – Relation with the Cut
Definition Given A ∈ Rn×n the adjacency matrix of G , and D = diag(A1) its
degree matrix, the Laplacian of G is the matrix L ∈ Rn×n such that L = D− A.

Property ∀x ∈ Rn, xTLx =
∑
i∼j

ω(i , j)(xi − xj)
2.

Proof

Corollary Given S ⊂ V , and x ∈ {−1, 1}n s.t. x(i) =

{
1 if i ∈ S ,

−1 else
, namely the

signed indicator of S , thus

xTLx = 4× Cut(S).

Proof Exercise

The Balanced Cut Problem Given this corollary, finding the signed indicator of
S ⊂ V s.t. |S | = n/2 which induces a cut of minimum weight, can be written:

minimise xTLx
subject to x ∈ {−1, 1}n,

and 1Tx = 0.
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The Graph Laplacian – Bounding the Cut

Property The Laplacian L is positive semi definite, and dim(Ker(L)) is the
number of connected components in G .
Notation The sorted eigenvalues of L, counted with multiplicity, are denoted
0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
Proof

Property Given S ⊂ V : |S | = n/2, thus

λ2 × n/4 ≤ Cut(S) ≤ λn × n/4.

Proof Exercise

Definition The eigenvalue λ2 is called the algebraic connectivity of G .

Flavour The algebraic connectivity gives an indication about how close to
disconnected the graph is.

Visual Illustration
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Solving the Balanced Cut Problem
The Balanced Cut Problem of finding S ⊂ V s.t. |S | = n/2 which induces
a cut of minimum weight is equivalent to solve

minimise xTLx
subject to x ∈ {−1, 1}n,

and 1Tx = 0.

which is NP-complete.

=⇒ Relaxing the 1st constraint: x ∈ {−1, 1}n ⇝ xTx = n.

Property An eigenvector of norm
√
n associated with λ2 is always a

solution of the Relaxed Balanced Cut Problem:

minimise xTLx
subject to xTx = n,

and 1Tx = 0.

Proof Exercise

Definition Such a vector is called the Fiedler vector, denoted by x2.
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Balanced Cut Problem – Building S from the Fiedler vector
Median Threshold Find xm the median of x2, and do

S = {i ∈ V : x(i) > xm} ∪ {half of the i ′s : x2(i) = xm}

Zero Threshold Do S = {i ∈ V : x2(i) > 0}
Guarantees about the connectivity of resulting subgraphs:

Denoting S = V \ S , GS = (S ,E ∩ (S × S)) is connected.

If x2(i) ̸= 0,∀i , then GS = (S ,E ∩ (S × S)) is also connected.

Sweep Cut Method [∼, inds] = sort(x2);
k0 ← −1;φ0 ←∞;
for k = 1 : n do

φcrt ← φ(inds(1 : k));
if φcrt < φ0 then

k0 ← k ;φ0 ← φcrt ;
end if

end for
return S = inds(1 : k0);

where

φ(S) =
Cut(S)

min(|S |, n − |S |)
.

Question: Why using φ
(and not Cut)?
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The Cheeger’s Inequality

Definition Given S ⊂ V , we denote by S’s isoperimetric ratio the scalar

φ(S) =
Cut(S)

min(|S |, n − |S |)
.

Theorem The following bounds for the isoperimetric ratio are called the
Cheeger’s inequality:

λ2

2
≤ min

S⊂V
φ(S) ≤

√
2λ2dω

max

Proof

Corollary The subset S∗ ⊂ V returned by the sweep cut method verifies the

Cheeger’s inequality:
λ2

2
≤ φ(S∗) ≤

√
2λ2dω

max .

Property The isoperimetric ratio of S∗ is at most 2×
√

min
S⊂V

φ(S)dω
max .

Proof Exercise
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Take Home Messages

Partitioning a graph onto two balanced1 subsets, such that the cut
is minimised, is a NP-complete problem.

If we relax the discrete optimisation problem into a continuous one,
the solution is the Fiedler vector, i.e. the eigenvector of the
Laplacian associated with the algebraic connectivity (2nd smallest
eigenvalue).

The isoperimetric ratio, that measures the consistency of a
partitioning, has its minimum bounded by two inequalities that
involve the algebraic connectivity. These are called the Cheeger’s
inequality.

The cut obtained by applying the Sweep Cut Method to the
Fiedler vector, also verifies the Cheeger’s inequality. Its isoperimetric
ratio has an upper bound that depends on the optimal solution.

1The problem remains NP-complete when imbalance is allowed.
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