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Community detection VS (Spectral) Graph Partitioning

o (Spectral) Graph Partitioning: For a specific application: parallel or
distributed computations, building VLSI, etc.
—> Known target, driven by the application.
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Community detection VS (Spectral) Graph Partitioning
o (Spectral) Graph Partitioning: For a specific application: parallel or
distributed computations, building VLSI, etc.
—> Known target, driven by the application.
o Community detection: For data analysis: finding groups of similar
nodes (typically, consistent groups in social networks).

—> Unknown target, driven by data.
Examples

Neo4j project
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Community detection VS (Spectral) Graph Partitioning
@ (Spectral) Graph Partitioning: For a specific application: parallel or
distributed computations, building VLSI, etc.
—> Known target, driven by the application.
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nodes (typically, consistent groups in social networks).
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Community detection VS (Spectral) Graph Partitioning
o (Spectral) Graph Partitioning: For a specific application: parallel or
distributed computations, building VLSI, etc.
—> Known target, driven by the application.

o Community detection: For data analysis: finding groups of similar
nodes (typically, consistent groups in social networks).
—> Unknown target, driven by data.

Examples
Barriot et al (2015
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Community detection VS (Spectral) Graph Partitioning

@ (Spectral) Graph Partitioning: For a specific application: parallel or
distributed computations, building VLSI, etc.
—> Known target, driven by the application.
o Community detection: For data analysis: finding groups of similar
nodes (typically, consistent groups in social networks).

—> Unknown target, driven by data.
Examples

Barriot et al (2015 = A community ~ a group of
y ® @ ~ densely connected nodes, loosely

4 Ve connected with the rest of the
& network.

% NB In the following, G = (V, E,w)
\ is an undirected graph. Community
< structure is a partitioning of V

denoted C = {(y, ..., Ck}.
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Attempts for formal definitions (Raddichi et al. 2004)

Given G = (V, E) some simple graph, S C V and S = V' \ S, we say that

@ Sis a k-core of G, with k € N, if
Vue S, IN(u)nS| >k
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Attempts for formal definitions (Raddichi et al. 2004)

Given G = (V, E) some simple graph, S C V and S = V' \ S, we say that

@ S is a a-clique of G, with a €]0,1], if
2x|ENSxS|/(IS| x(IS|—-1)) >«

L. le Gorrec - P. Knight - F. Arrigo Complex Networks ENSEEIHT 21/22 3/13



Attempts for formal definitions (Raddichi et al. 2004)

Given G = (V, E) some simple graph, S C V and S = V' \ S, we say that

@ S is a a-clique of G, with « €]0, 1], if
2x|ENSxS|/(IS| x(IS|—-1)) >«

L. le Gorrec - P. Knight - F. Arrigo Complex Networks ENSEEIHT 21/22 3/13



Attempts for formal definitions (Raddichi et al. 2004)

Given G = (V, E) some simple graph, S C V and S = V' \ S, we say that

@ S is a Strong Community of G if
Yue S, INw)NS| > |Nw)nS|.
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Attempts for formal definitions (Raddichi et al. 2004)

Given G = (V, E) some simple graph, S C V and S = V' \ S, we say that

@ S is a Weak Community of G if I

S IV NS> N (u)nS]

uesS uesS
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Attempts for formal definitions (Raddichi et al. 2004)

Given G = (V, E) some simple graph, S C V and S = V' \ S, we say that

130 edges 161 edges

@ S is a Weak Community of G if el
S V() NS> S IN (W) N S| CT el

uesS uesS
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Attempts for formal definitions (Raddichi et al. 2004)

Given G = (V, E) some simple graph, S C V and S = V' \ S, we say that

161 edges

@ Sis a k-core of G, with k e N, if 130 edges
Vue S, INw)NS| >k '

@ S is a a-clique of G, with « €]0,1], if
2% [ENS x S|/ (IS x (IS| - 1)) > a
@ S is a Strong Community of G if w
Yue S, IN(w)nS| > [Nw)nS|.

@ S is a Weak Community of G if

S IN(W)N S>> [N(u) NS

uesS ues

— No definitive definition, more a thumb rule.
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Unformal definitions — Screenshot from (Veldt2019)

“A community is often thought of as a set of nodes that has more tions bet its b

than to the remainder of the network.” [Leskovec et al., 2008]

“Graph clustering is the task of grouping the vertices of the graph into clusters taking into consid-
eration the edge structure of the graph in such a way that there should be many edges within each

cluster and relatively few between the clusters.” [Schaeffer, 2007]

“One mesoscopic structure, called a community, consists of a group of nodes that are relatively
densely connected to each other but sparsely connected to other dense groups in the network.” [Porter

et al., 2009

“Communities, or clusters, are usually groups of vertices having higher probability of being connected
to each other than to members of other groups, though other patterns are possible.” [Fortunato and

Hric, 2016]

“The most basic task of community detection, or graph clustering, consists in partitioning the vertices

of a graph into clusters that are more densely connected.” [Abbe, 2018]

“Generally speaking, techniques for graph partiti g and graph clustering aim at the identification

of verter subsets with many internal and few external edges.” [Bader et al., 2013]

“A property that seems to be common te many networks is community structure, the division of
network nodes into groups within which the network connections are dense, but between which they

are sparser.” [Newman and Girvan, 2004]
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“A community is often thought of as a set of nodes that haslmm‘e tions b its b I
than to the remainder|of the network.” [Leskovec et al., 2008]

“Graph clustering is the task of grouping the vertices of the graph into clusters taking into consid-

eration the edge structure of the graph in such a way that there should be|many edges within leach
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Unformal definitions — Screenshot from (Veldt2019)

L. le Gorre

“A community is often thought of as a set of nodes that has more tions its b

than to the remainder of the network.” [Leskovec et al., 2008]

“Graph clustering is the task of grouping the vertices of the graph into clusters taking into consid-
eration the edge structure of the graph in such a way that there should be many edges within each

cluster and relatively few between the clusters.” [Schaeffer, 2007

“One mesoscopic structure, called a community, consists of a group of nodes that are relatively
densely connected to each other but sparsely connected to other dense groups in the network.” [Porter

et al., 2009]

“Communities, or clusters, are usually groups of vertices having higher probability of being connected
to each other than to members of other groups, though other patterns are possible.” [Fortunato and

Hric, 2016]

“The most basic task of community detection, or graph clustering, consists in partitioning the vertices

of a graph into clusters that are more densely connected.” [Abbe, 2018]

“Generally speaking, techniques for graph partitioning and graph clustering aim at the identification
of vertex subsets with many internal and few external edges.” [Bader et al., 2013]

“A property that seems to be common to many networks is community structure, the division of
network nodes into groups within which the network connections are dense, but between which they

are sparser.” [Newman and Girvan, 2004]
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How consistent is my community (structure)?
The Normalised Cuts (Shi&Malik2000)

Normalised Cuts: Denoting vol(C) = > d“(i), the value of the
ieC

normalised cuts is defined as:

B Cut(C)
*(6,€) = gc wol(C) "
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How consistent is my community (structure)?
The Normalised Cuts (Shi&Malik2000)

Normalised Cuts: Denoting vol(C) = > d“(i), the value of the
ieC

normalised cuts is defined as:

B Cut(C)
*(6,€) = CZE; wol(C) "

Why not > C‘féf)? Because of the real Cheeger’s inequality!

ceC
e With Mass(C) = > Mass(i):
i€eS
Nj2 s ——— U)oy ma20)
min(Mass(S), Mass(S)) ieV Mass(i)
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How consistent is my community (structure)?
The Normalised Cuts (Shi&Malik2000)

Normalised Cuts: Denoting vol(C) = > d“(i), the value of the
ieC

normalised cuts is defined as:

B Cut(C)
*(6,€) = CXE; wol(C) "

Why not > CL"tC(f)? Because of the real Cheeger’s inequality!

ceC
e With Mass(C) = > Mass(i):
ieS
Cut(S) de (i)
A2/2 < < /2A :
2 (Mass(S), Mass(3)) ~ \/ 271V Mass (i)

= Mass(i) = d“(i) makes the upper bound not degree-dependant.
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How consistent is my community (structure)?

The Modularity (Newman&Girvan2003)

Idea: A modular network should have more edges inside its
communities than what is expected in a random graph with the
same degree distribution.
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How consistent is my community (structure)?

The Modularity (Newman&Girvan2003)

Idea: A modular network should have more edges inside its
communities than what is expected in a random graph with the
same degree distribution.

Property Given Gg = (V/, EgR) a random undirected graph with prescribed

node degrees d(1),...,d(n), then Pr(i ~ j) = dz(fg‘i({) & d(;)ig).
m
Proof
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How consistent is my community (structure)?

The Modularity (Newman&Girvan2003)

Idea: A modular network should have more edges inside its
communities than what is expected in a random graph with the
same degree distribution.

Property Given Gg = (V/, EgR) a random undirected graph with prescribed

node degrees d(1),...,d(n), then Pr(i ~ j) = dz(nli(f) §1 d(iz)i(j)_
m
Proof

Modularity Given m = |E| and assuming that Pr(i ~ j) = % in Ggr,
then

9(G,C) = Z\EOCXC\ E[|E, N C x CJ] (1)
CeC

= S IEnCx - V"’( ) 2)
ceC

Exercise Prove that (1) < (2).
ENSEEIHT 21/22 6/13



More on Modularity

Property Given, A € {0,1}"" the adjacency matrix of G, and stating
m= Z d()/2, one can write

Z Z ( )d(1)> .
CECI,_]EC
Proof Exercise
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More on Modularity

Property Given, A € {0,1}"" the adjacency matrix of G, and stating
m= Z d()/2, one can write

TP CIEE

CeCijeC
Proof Exercise

Extension If G is weighted, the Modularity is extended by stating
m=7>"aj;/2, and
iJ

Z $ (au )dw()>_

2m
CECIJEC

L. le Gorrec - P. Knight - F. Arrigo Complex Networks ENSEEIHT 21/22 7/13



More on Modularity

Property Given, A € {0,1}"" the adjacency matrix of G, and stating
m= Z d(i)/2, one can write

TP CIEE

CeCijeC
Proof Exercise

Extension If G is weighted, the Modularity is extended by stating
m=7>"aj;/2, and
ij

a2 X (- T ).

2m
ceCijeC

Property For a unweighted graph G,

-1/2<9(6,C) <1
Proof Exercise for Q(G, C) < 1.
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A Bunch of Algorithms

Edge Betweeness (Newman&Girvan2001)
Idea Edges that bridge communities are involved in many shortest paths.
Cutting those edges should reveal the modular structure of the network.
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A Bunch of Algorithms

Edge Betweeness (Newman&Girvan2001)

Idea Edges that bridge communities are involved in many shortest paths.
Cutting those edges should reveal the modular structure of the network.

Definition (G unweighted) Yu, v € V, kyin = min{k : u € N*(v)} and a kpi,-path
between v and v is called a shortest path. Given e € E, the betweeness of e is

#shortest paths between u and v that contain e
ble)= >
#£shortest paths between v and v
u#veV

Examples
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A Bunch of Algorithms

Edge Betweeness (Newman&Girvan2001)

Idea Edges that bridge communities are involved in many shortest paths.
Cutting those edges should reveal the modular structure of the network.

Definition (G unweighted) Yu, v € V, kyin = min{k : u € N*(v)} and a kpi,-path
between v and v is called a shortest path. Given e € E, the betweeness of e is

b(e) Z #shortest paths between u and v that contain e
e) = .
#£shortest paths between v and v

u#veV

Examples

Algorithm 1) Compute the betweeness of each edge. 2) Remove the one with
highest betweeness. 3) Update the betweeness of affected edges. 4) Go to Step 2.

—> A divisive algorithm that produces a dendrogram.

Example
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A Bunch of Algorithms

Louvain (Blondel et al.2008)
Idea An efficient “heuristic’ to maximise the Modularity Q(G,.)!.

Modularity
Optimization

13
Community
Aggregation
14 4

4
2 24
- 1 1 —s QS_Q
1 pass 2% pass
; W)

16 2

—> An agglomerative clustering.

v/ Efficient, accurate, used to maximise other measures (not efficiently for all).

'whose actual maximisation is NP complete
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A Bunch of Algorithms

Louvain (Blondel et al.2008)
Idea An efficient “heuristic’ to maximise the Modularity Q(G,.)!.

v A
Modularity Community
, Optimization Aggregation
14 4

4
1 2 24
6 — 1 1 — @3_@
1 pass 2% pass
; W)

16 2

120 Picture from Blondel et al (2008)

—> An agglomerative clustering.
v/ Efficient, accurate, used to maximise other measures (not efficiently for all).
X A community returned by Louvain can be disconnected !

@ Still one of the most used algorithms to date.

'whose actual maximisation is NP complete
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A Bunch of Algorithms

Graph Convolutional Networks (Kipf&Welling2017)
Idea The state of a nodes depends on its neighbours: Convolutional neural

networks on graphs.

TARGET NODE

K

o<l

o1
“on

Picture from (Leskovec 2019,KDD)

®
]
)
o
®
®
®

INPUT GRAPH
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A Bunch of Algorithms

Graph Convolutional Networks (Kipf&Welling2017)
Idea The state of a nodes depends on its neighbours: Convolutional neural

networks on graphs.

TARGET NODE

INPUT GRAPH

Picture from (Leskovec 2019,KDD)

Graph Convolutional Layer o(AH®OW()), with o nonlinear function and

@ A € R"™*" the adjacency matrix,

@ H(®) c R"*9 the “features” of nodes at layer t,
o W(t) ¢ R9*du1 the weights to learn in the tth layer.

> —

HO) =
a(MXW()

N

HQ) —

o(MHOWOD) [

M € R"X" graph. struct.

X € R"™f node features
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A Bunch of Algorithms

Graph Convolutional Networks (Kipf&Welling2017)
Idea The state of a nodes depends on its neighbours: Convolutional neural

networks on graphs.

TARGET NODE

INPUT GRAPH

Picture from (Leskovec 2019,KDD)

Graph Convolutional Layer o(MH®W!() with ¢ nonlinear function and

@ M =D /2AD~1/2, with A = I + A and D = diag(A1)

@ H(®) ¢ R"%% the “features” of nodes at layer t,

o W(t) ¢ R9*du1 the weights to learn in the tth layer.

A/\ HO =
\|Z/ o (Mxw©)

H(?) =

o(MHOWD) [

M € R"%" graph. struct.
X € R"*f node features
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How close to the groundtruth is a community structure?

Problem Are two partitionings C = {Cy, ..., o} and K = {Ki, ..., K4} close?
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How close to the groundtruth is a community structure?

Problem Are two partitionings C = {Cy, ..., o} and K = {Ki, ..., K4} close?

Rand Index Counting the ratio of agreements:

RI = M1t fog , with
mi+no1+no—+ noo
According to C
#{u,v} | = community # communities |
According = community nia nio
to K = communities no,1 no.o
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How close to the groundtruth is a community structure?

Problem Are two partitionings C = {Cy, ..., o} and K = {Ki, ..., K4} close?

Rand Index Counting the ratio of agreements:

RI = M1t fog , with
mi+no1+no—+ noo
According to C
#{u,v} | = community # communities |
According = community niq nio
to K = communities no.1 no.o

Adjusted against chance Assuming a random clustering with number of
elts/cluster:

~ RI-E[R] 2(n0,0m.1 — Mo.111,0)
ARl = =
max(RI) —E[RI] ~ (noo + no1)(m,1+ no1) + (oo + nio)(na + nio)
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How close to the groundtruth is a community structure?

Mutual Information measures the mutual dependence between 2 random variables
(rv). Based on the entropy.

Definition: Given a rv X taking values xi, ..., Xk, the entropy of X is

k
H(X) = — Z Pr(X = x;) x loga(Pr(X = x;))

Remark Entropy is said to be the average level of surprise of X. Why?
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How close to the groundtruth is a community structure?

Mutual Information measures the mutual dependence between 2 random variables
(rv). Based on the entropy.

Definition: Given a rv X taking values xi, ..., Xk, the entropy of X is
K
H(X) == Pr(X = x;) x loga(Pr(X = x;))
i=1
Remark Entropy is said to be the average level of surprise of X. Why?

Definition Given 2 rv X, Y with same values, their mutual information is
Ml = H(X) — H(X]Y)
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How close to the groundtruth is a community structure?

Mutual Information measures the mutual dependence between 2 random variables
(rv). Based on the entropy.

Definition: Given a rv X taking values xi, ..., Xk, the entropy of X is
K
H(X) == Pr(X = x;) x loga(Pr(X = x;))
i=1
Remark Entropy is said to be the average level of surprise of X. Why?

Definition Given 2 rv X, Y with same values, their mutual information is
Ml = H(X) — H(X]Y)
Seeing clusterings as rv C, K, with Pr(C = C;) = |C;|/n, thus

P q
M =35 |G K|/N x loga(n x |G 1 K| /(1GilIKu]))

i=1 j=1
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How close to the groundtruth is a community structure?

Mutual Information measures the mutual dependence between 2 random variables
(rv). Based on the entropy.

Definition: Given a rv X taking values xi, ..., Xk, the entropy of X is

K
H(X) == Pr(X = x;) x loga(Pr(X = x;))
i=1
Remark Entropy is said to be the average level of surprise of X. Why?

Definition Given 2 rv X, Y with same values, their mutual information is
Ml = H(X) — H(X]Y)
Seeing clusterings as rv C, K, with Pr(C = C;) = |C;|/n, thus

P q
M =35 |G K|/N x loga(n x |G 1 K| /(1GilIKu]))
i=1 j=1

Remark The normalized MI is most often used. An adjusted MI exists but less
used because of its complexity.

Example
L. le Gorrec - P. Knight - F. Arrigo Complex Networks

ENSEEIHT 21/22 12/13



Conclusion

o Community detection means finding consistent groups of nodes
within a network.

@ What a good community should look like is highly application
dependant (groups of densely connected nodes, but how?).

@ This field has been built on the fly to answer real world problem of
practitioners.

@ Modularity, Louvain algorithm, GCNs, etc. are used because they
work globally well, even if they have flaws.

@ No consensus on what does it means to be close for clusterings.

-~

And for more complex networks 7
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