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Community detection VS (Spectral) Graph Partitioning
(Spectral) Graph Partitioning: For a specific application: parallel or
distributed computations, building VLSI, etc.

=⇒ Known target, driven by the application.

Community detection: For data analysis: finding groups of similar
nodes (typically, consistent groups in social networks).

=⇒ Unknown target, driven by data.
Examples

=⇒ A community ≈ a group of
densely connected nodes, loosely
connected with the rest of the
network.
NB In the following, G = (V ,E , ω)
is an undirected graph. Community
structure is a partitioning of V
denoted C = {C1, ...,Ck}.
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Attempts for formal definitions (Raddichi et al. 2004)

Given G = (V ,E ) some simple graph, S ⊂ V and S = V \ S , we say that

S is a k-core of G , with k ∈ N, if
∀u ∈ S , |N (u) ∩ S | ≥ k

S is a α-clique of G , with α ∈]0, 1], if
2× |E ∩ S × S |/ (|S | × (|S | − 1)) ≥ α

S is a Strong Community of G if

∀u ∈ S , |N (u) ∩ S | > |N (u) ∩ S |.

S is a Weak Community of G if∑
u∈S

|N (u) ∩ S | >
∑
u∈S

|N (u) ∩ S |

=⇒ No definitive definition, more a thumb rule.
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Unformal definitions – Screenshot from (Veldt2019)
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How consistent is my community (structure)?
The Normalised Cuts (Shi&Malik2000)

Normalised Cuts: Denoting vol(C ) =
∑
i∈C

dω(i), the value of the

normalised cuts is defined as:

Φ(G , C) =
∑
C∈C

Cut(C )

vol(C )
.

Why not
∑
C∈C

Cut(C)
|C | ? Because of the real Cheeger’s inequality!

With Mass(C ) =
∑
i∈S

Mass(i):

λ2/2 ≤ Cut(S)

min(Mass(S),Mass(S))
≤

√
2λ2max

i∈V

dω(i)

Mass(i)
.

=⇒ Mass(i) = dω(i) makes the upper bound not degree-dependant.
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How consistent is my community (structure)?
The Modularity (Newman&Girvan2003)

Idea: A modular network should have more edges inside its
communities than what is expected in a random graph with the
same degree distribution.

Property Given GR = (V ,ER) a random undirected graph with prescribed

node degrees d(1), ..., d(n), then Pr(i ∼ j) = d(i)d(j)
2m−1 ≈

m≫1

d(i)d(j)
2m .

Proof

Modularity Given m = |E | and assuming that Pr(i ∼ j) = d(i)d(j)
2m in GR ,

then

Q(G , C) = 1

m

∑
C∈C

|E ∩ C × C | − E[|Er ∩ C × C |] (1)

=
1

m

∑
C∈C

|E ∩ C × C | − vol(C )2

4m
. (2)

Exercise Prove that (1) ⇐⇒ (2).
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More on Modularity
Property Given, A ∈ {0, 1}n×n the adjacency matrix of G , and stating
m =

∑
i
d(i)/2, one can write

Q(G , C) = 1

2m

∑
C∈C

∑
i ,j∈C

(
ai ,j −

d(i)d(j)

2m

)
.

Proof Exercise
Extension If G is weighted, the Modularity is extended by stating
m =

∑
i ,j

ai ,j/2, and

Q(G , C) = 1

2m

∑
C∈C

∑
i ,j∈C

(
ai ,j −

dω(i)dω(j)

2m

)
.

Property For a unweighted graph G ,

−1/2 ≤ Q(G ,C ) ≤ 1.

Proof Exercise for Q(G ,C ) ≤ 1.
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A Bunch of Algorithms
Edge Betweeness (Newman&Girvan2001)

Idea Edges that bridge communities are involved in many shortest paths.
Cutting those edges should reveal the modular structure of the network.

Definition (G unweighted) ∀u, v ∈ V , kmin = min{k : u ∈ N k(v)} and a kmin-path
between u and v is called a shortest path. Given e ∈ E , the betweeness of e is

b(e) =
∑

u ̸=v∈V

#shortest paths between u and v that contain e

#shortest paths between u and v
.

Examples
Algorithm 1) Compute the betweeness of each edge. 2) Remove the one with

highest betweeness. 3) Update the betweeness of affected edges. 4) Go to Step 2.
=⇒ A divisive algorithm that produces a dendrogram.

Example
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A Bunch of Algorithms
Louvain (Blondel et al.2008)

Idea An efficient “heuristic” to maximise the Modularity Q(G , .)1.

=⇒ An agglomerative clustering.

✓ Efficient, accurate, used to maximise other measures (not efficiently for all).

✗ A community returned by Louvain can be disconnected !

Still one of the most used algorithms to date.
1whose actual maximisation is NP complete
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A Bunch of Algorithms
Graph Convolutional Networks (Kipf&Welling2017)

Idea The state of a nodes depends on its neighbours: Convolutional neural
networks on graphs.

Graph Convolutional Layer σ(AH(t)W(t)), with σ nonlinear function and

A ∈ Rn×n the adjacency matrix,

H(t) ∈ Rn×dt the “features” of nodes at layer t,

W(t) ∈ Rdt×dt+1 the weights to learn in the tth layer.

M ∈ Rn×n graph. struct.
X ∈ Rn×f node features

H(1) =

σ(MXW(0))

H(2) =

σ(MH(1)W(1))
. . . Z =

σ(MH(k)W(k))
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How close to the groundtruth is a community structure?

Problem Are two partitionings C = {C1, ...,Cp} and K = {K1, ...,Kq} close?

Rand Index Counting the ratio of agreements:

RI =
n1,1 + n0,0

n1,1 + n0,1 + n1,0 + n0,0
, with

According to C
#{u, v} = community ̸= communities

According = community n1,1 n1,0
to K ≠ communities n0,1 n0,0

Adjusted against chance Assuming a random clustering with number of
elts/cluster:

ARI =
RI − E[RI ]

max(RI )− E[RI ]
=

2(n0,0n1,1 − n0,1n1,0)

(n0,0 + n0,1)(n1,1 + n0,1) + (n0,0 + n1,0)(n1,1 + n1,0)
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How close to the groundtruth is a community structure?

Mutual Information measures the mutual dependence between 2 random variables
(rv). Based on the entropy.

Definition: Given a rv X taking values x1, ..., xk , the entropy of X is

H(X ) = −
k∑

i=1

Pr(X = xi )× log2(Pr(X = xi ))

Remark Entropy is said to be the average level of surprise of X . Why?

Definition Given 2 rv X ,Y with same values, their mutual information is

MI = H(X )− H(X |Y )

Seeing clusterings as rv C ,K , with Pr(C = Ci ) = |Ci |/n, thus

MI =

p∑
i=1

q∑
j=1

|Ci ∩ Kj |/N × log2(n × |Ci ∩ Kj |/(|Ci ||KJ |))

Remark The normalized MI is most often used. An adjusted MI exists but less
used because of its complexity.

Example
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Conclusion

Community detection means finding consistent groups of nodes
within a network.

What a good community should look like is highly application
dependant (groups of densely connected nodes, but how?).

This field has been built on the fly to answer real world problem of
practitioners.

Modularity, Louvain algorithm, GCNs, etc. are used because they
work globally well, even if they have flaws.

No consensus on what does it means to be close for clusterings.

? And for more complex networks ?
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