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Reminders and introduction

Previously, we have seen that for reducing the dimension by the mean of PCA we do not need the whole spec-
tral decomposition of the symmetric variance/covariance matrix. Indeed we only need the leading eigenpairs
which provide enough information about the data.

We have implemented the power method, which was introduced in the Calcul Scientifique lectures, to compute
the leading eigenpair. As it has been presented during the same lectures, it is possible to add a deflation
process to this algorithm, in order to also compute the following eigenpairs.

In this part of the project, we will see that this specific algorithm is not efficient in the sense of running time.
Then we will study two more efficient algorithms, based on an object called Rayleigh quotient.

1 Numerical issues and extension of the power method

The basic power method, which was introduced in the Calcul Scientifique lectures, is recalled in Algorithm 1;
it can be used to determine the eigenpair associated to the largest (in module) eigenvalue.

Algorithm 1 Vector power method

Input: Matrix A ∈ Rn×n

Output: (λ1, v1) eigenpair associated to the largest (in module) eigenvalue.
x0 ∈ Rn given and p = 0
βp = xp

T ·A · xp
repeat
yp+1 = A · xp
xp+1 = yp+1/ ‖yp+1‖
βp+1 = xp+1

T ·A · xp+1

p = p+ 1
until |βp+1 − βp| / |βp| < ε
λ1 = βp+1 and v1 = xp+1

By adding the deflation process, we are able to compute all the eigenpairs we need to reach a certain percentage
of the trace of A. But sadly, this algorithm is not efficient at all in terms of computing time.

A version of the power method with deflation is provided in the file eigenpair_computation.f90. It consists
in a subroutine called deflated_power_method.

Question 1 : Compare the running times of the subroutine deflated_power_method to compute a few
eigenpairs and of the lapack subroutine dsyev – all you need to know about this subroutine is given in the
file “compléments.pdf”. Comment.

Question 2 : What do you think to be the main drawback of the deflated power method in terms of
computing time ?

Our objectiv is to extend the basic power method to compute blocks of eigenpairs and more precisely to
compute an invariant subspace associated to the largest eigenvalues.

1.1 The Schur decomposition

As said in the introduction, the algorithms on which we will focus make a great use of the Rayleigh quotient.

But before introducing this notion, we need to do some recalls about the Schur decomposition (introduced in
the “Calcul Scientifique” lectures). Indeed, Rayleigh quotient and Rayleigh-Ritz projection are largely built
on the two fundamental theorems below.
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Theorem 1 (General Schur decomposition).

Let A ∈ Rn×n, there exists an orthogonal matrix U such that

UT ·A · U = T,

where T is upper triangular. By appropriate choice of U , the eigenvalues of A, which are the diagonal elements
of T , may be made to appear in any order.

For the proof see [1] (Chapter 1, page 13).

The decomposition UT · A · U = T, is called a Schur decomposition of A. Columns of U are called Schur
vectors. This decomposition is not unique since it depends on the order of the eigenvalues in T and because
of potential multiple eigenvalues.

Furthermore, if A is symmetric TT =
(
UT ·A · U

)T
= UT ·AT ·UT T

= UT ·A ·U = T , T is thus both upper
and lower triangular and hence is diagonal.

Λ = UT ·A · U with Λ = diag(λ1, · · ·, λn)

Therefore A · U = U · Λ so that, if ui denotes the i-th column of U then (λi, ui) is an eigenpair of A. We
summarize all this in the following theorem.

Theorem 2 (Spectral decomposition of a symmetric matrix).

If A symmetric, it thus has an orthogonal basis of eigenvectors and there exists a decomposition called spectral
decomposition:

UT ·A · U = Λ , where U is orthogonal, and Λ = diag(λ1, · · ·, λn)

This second theorem ensures that our variance/covariance matrix can be diagonalized in an orthonormal
basis.

1.2 Rayleigh quotient and Rayleigh-Ritz projection method

We finally describe in this section the most commonly used method for extracting an approximate eigenspace
from a larger subspace: the Rayleigh-Ritz projection method, which makes deep use of the notion of Rayleigh
quotient.

To keep the introduction of Rayleigh-Ritz method simple we first show – as in [1] (Chapter 4.1) – how to
find exact eigenpairs; we extend this to computing exact eigenspaces and will then suggest (without giving
the proof) a procedure to compute approximate eigenpairs.

Theorem 3 (Rayleigh quotient).

Let U be a subspace and let the columns of the matrix U be an orthogonal basis for U (UT is the left inverse
of U , UT U = I). We define the Rayleigh quotient to be

H = UT ·A · U .

If X ⊂ U is an eigenspace of A then there is an eigenpair (λ,w) of H such that (λ,U · w) is an eigenpair
of A.

Proof. Note that no assumption is made on the size of the subspace U . Let (λ, x) be an eigenpair of A
corresponding to X and let x = U · w. By definition, (λ, x) being an eigenpair of A, A · x = λx, and
A · U · w = λU · w. Thus,

H · w = UT ·A · U · w = UT · U · λw = λw ,

so that (λ,w) is an eigenpair of H.
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With Theorem 3, we have shown that if U contains an invariant subspace, an exact eigenpair of A can be
obtained by looking at eigenpairs of the Rayleigh quotient H.

Question 3 : If A is of dimension n, and the subspace U is of range p, what is the dimension of H ? Hence,
what should be the relation between n and p to make the Rayleigh quotient interesting to obtain eigenpairs
of A, and why ?

Furthermore (and we assume it by continuity), we can expect that when U contains an approximate eigenspace

X̃ of A there would be an eigenpair (L̃, w̃) of H such that (L̃, U · w̃) is an approximate eigenpair of A.

This suggests that to approximate an eigenpair of A we can perform the following steps that define the main
steps :

1. Find U an orthogonal basis of a subspace U .

2. Form the Rayleigh quotient H = UT ·A · U .

3. Compute (M,w) an eigenpair of H.

4. Then (M,U · w) is an approximate eigenpair of A.

But the most important thing is that one can also extend the previous procedure to compute an approximation
of an eigenspace of dimension m – i.e. an approximation of a block of m eigenpairs. This is illustrated
below in the case of a symmetric matrix A (this is often referred to as the Rayleigh-Ritz projection method):

Given U an orthogonal basis of a subspace U ,

1. Form the Rayleigh quotient H = UT ·A · U .

2. H is symmetric : compute the spectral decomposition of H : XT ·H ·X = Λ

3. X is thus an eigenspace of H corresponding to eigenvalues in diag(Λ) so that U ·X is an approximate
eigenspace of A corresponding to eigenvalues in diag(Λ).

In the following, we are going to present two extensions of the power method, to compute simultaneously
blocks of eigenpairs. The both extensions use the Rayleigh quotient, but not in the same way.

1.3 Extending the power method to computing a dominant eigenspace

Now, we have all the formal mathematical ingredients we need to build our two new algorithms. But before
presenting them, here are pieces of advice and remarks you have to keep in mind in order to extend the power
method to compute blocks of eigenpairs.

1.3.1 First remark

The first question you may ask is : why do not simply apply Algorithm 1 on m initial vectors (matrix Xp),
instead of just one (vector xp) ? Actually, if one extends Algorithm 1 to iterate on such a matrix, then it will
not tend to the expect result, i.e. Xp does not converge towards a matrix whose columns contain m different
eigenvectors of A.

Question 4 : Towards which matrix does Xp converge in such an algorithm ? Modify the Matlab script
puissance_iteree.m from the TP-Projet 1 to check your conjecture.
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1.3.2 Stopping criterion

Another difficulty to adapt Algorithm 1 in order to compute blocks of eigenpairs at once is the stopping
criterion, because a set of eigenpairs and not only one vector must be tested for convergence.

The current stopping criterion in Algorithm 1 relies on the stability of the computed eigenvalue (it tests the
fact that the computed eigenvalue no longer changes “much”). This does not take into account the invariance
of the eigenvector which is numerically more meaningful.

One should first notice that, in Algorithm 1, at convergence xp = v1 holds and therefore A · xp = λ1 · xp. By
analogy with the backward error introduced during the lectures for the solution of linear systems (A · x = b

leading to backward error ‖A·x−b‖
‖A‖‖x‖+‖b‖ ) we suggest to replace the stopping criterion in Algorithm 1 by a

backward error on the invariance of the eigenvectors that can be estimated as ‖A · xp − βp+1 · xp‖/|βp + 1|
where the Frobenious norm could used to compute the norm of a matrix.

Furthermore, when a complete set of eigenpairs is expected to converge then the previous criterion should be
generalized to a matrix Xp instead of a vector xp.

1.3.3 Efficiency and controlled accuracy

At each iteration p, columns of Xp are expected to be an approximation of eigenvectors of A. Hence, Xp is
expected to be an approximate eigenspace of A.

The Rayleigh quotient H computed on an estimate of the eigenspace U (H = UT · A · U) is a small square
symmetric matrix which holds the eigenspace information and can thus be used for computing the invariance
of the eigenspace and thus a global stopping criterion. This point is used to build the first extension of the
power method “Subspace V0” given in Algorithm 2.

Furthermore, since H is small, computing the spectral decomposition of H is cheap, and the Rayleigh-Ritz
projection method can be applied to improve the stopping criterion, to accelerate the method and to obtain
the dominant eigenpairs of A. In other words, instead of waiting the global convergence towards an invariant
subspace, another possibility is to check after each iteration if some columns in Xp have converged already
towards some eigenvectors of A. This point will be used in the “Subspace V1” extension of the power method,
whose pseudo-code is provided in Algorithm 4.

2 Extending the power method to compute dominant eigenspace
vectors

As mentioned before, a direct extension of the power method where we iterate simultaneously on m initial
vectors V , instead of just one, will not provide in general the expected result. Indeed, it is a little bit
more complicated to create an extension of the power method to compute blocks of eignepairs, which works
efficiency.

In this section we are going to present two extensions of the power method.

2.1 Subspace V0: basic version

The first basic version of the method to compute an invariant subspace associated to the largest eigenvalues
is described in Algorithm 2 and makes great use of Rayleigh quotient and spectral decomposition.

Given a set of m linearly independent vectors Y , the Algorithm 2 computes the eigenvectors associated with
the m largest (in module) eigenvalues in R(Y ) – R(Y ) being the subspace generated by the m columns of Y .

5



Calcul Scientifique et Analyse de Données

Algorithm 2 Dominant eigenspace method: basic version

Input: Symmetric matrix A ∈ Rn×n, tolerance ε and MaxtIter (max nb of iterations)
Output: m dominant eigenvectors Vout and the corresponding eigenvalues Λout.

Generate a set of m linearly independent vectors V ∈ Rn×m; niter = 0
repeat
V ←− orthonormalization of the columns of Y
Compute Y such that Y = A · V
Form the Rayleigh quotient H = V T ·A · V
niter = niter + 1

until ( niter > MaxIter or Invariance of the subspace V at precision ε : ‖AV − V H‖/‖A‖ ≤ ε)
Compute the spectral decomposition of the Rayleigh quotient H from which the m dominant eigenvalues
Λout and corresponding eigenspace Vout can be deduced.

Question 5 : Why do Algorithms 2 and 4 proceed with an “orthonormalization of the columns of Y ” ?

In Algorithm 2, our stopping criterion is built on the invariance of the subspace V . To define the invariance of
the subspace, we can extend the notion of backward error for the solution of linear systems to this eigenspace
method, as it is stated in the Section 1.3.2.

To simplify our discussion, assume that we have converged so that AV = V Λout with Λout = diag(λ1, . . . , λm).
At convergence we thus have V H = V V TAV = V V TV Λout = V Λout. Thus, in our context, a possible
measure of the backward error could be : ‖AV − V H‖/‖A‖.
Question 6 : In the file eigenpair_computation.f90, fill in the subroutine subspace_iter_v0 to obtain
Algorithm 2.

2.2 Subspace V1: improved version making use of Raleigh-Ritz projection

Several modifications are needed to make the simple subspace iteration an efficient and practically applicable
code.

First we may chose to operate on a subspace whose dimension m is larger than the number of the dominant
eigenvalues (nev) needed. Moreover, in our application, it is more likely that the user asks to compute the
smallest eigenspace such that the sum of the associated dominant eigenvalues is larger than a given percentage
of the trace of the matrix A, than a given number of eigenpairs. The Rayleigh-Ritz projection procedure can
then be used to get the approximate eigenspace and stop when the expected percentage is reached.

The Rayleigh-Ritz projection procedure is combined with subspace iteration method to improve the conver-
gence. It consists in rearranging the orthogonal matrix V so that its columns reflect the fast convergence of
the dominant subspaces.

The algorithmic description of this procedure is given below, for a symmetric matrix A. We assume that the
matrix is symmetric positive definite, define the Raleigh-Ritz projection algorithm and then introduce the
improved version of our algorithm.

Algorithm 3 Raleigh-Ritz projection

Input: Matrix A ∈ Rnxn and an orthonormal set of vectors V .
Output: The approximate eigenvectors V and the corresponding eigenvalues Λ.
Compute the Rayleigh quotient H = V TAV .
Compute the spectral decomposition H = X ΛXT , where the eigenvalues of H (diag(Λ)) are arranged in
descending order of magnitude.
Compute V = V X.
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Algorithm 4 Dominant eigenspace method with Raleigh-Ritz projection

Input: Symmetric matrix A ∈ Rn×n, tolerance ε, MaxIter (max nb of iterations) and PercentTrace the
target percentage of the trace A
Output: m dominant eigenvectors Vout and the corresponding eigenvalues Λout.

Generate an initial set of m orthonormal vectors V ∈ Rn×m; niter = 0; PercentReached = 0
repeat
V ←− orthonormalization of the columns of Y
Compute Y such that Y = A · V
Rayleigh-Ritz projection applied on orthonormal vectors V and matrix A
Convergence: save eigenpairs that have converged and update PercentReached
niter = niter + 1

until ( PercentReached > PercentTrace or niter > MaxIter )

Convergence is tested immediately after a Rayleigh-Ritz Projection step. We want to test which approximate
eigenvector has converged; we will test in order the columns associated to the largest entries in Λ and will
stop as soon as one eigenvector has not converged.

Note that if the jth column of V has converged then ‖rj‖ = ‖A · Vj −Λj · Vj‖ ≤ γ ε, where ε is a convergence
criterion and γ is a scaling factor. A natural choice of γ is an estimate of some norm of A.

Convergence theory says the eigenvectors corresponding to the largest eigenvalues will converge more swiftly
than those corresponding to smaller eigenvalues. For this reason, we should test convergence of the eigenvec-
tors in the order j = 1, 2, . . . and stop with the first one to fail the test.

Question 7 : Explain in your own words – by taking great care to be clear – the differences between
Algorithms 2 and 4, and their consequences. Highlight especially the different uses of the Rayleigh quotient.

Question 8 : In the file eigenpair_computation.f90, write the subroutine subspace_iter_v1 to obtain
Algorithm 4.

3 TO DO : Numerical experiments

The Fortran code can be compiled by typing the make command (a “Makefile” is provided). This will generate
an executable file named “main”, which executes the driver program. Everything you need to know to run
your main program is in the readme file in the sources.

To run your program, you have to set up several parameters :

1. the method variant (the Lapack subroutine dsyev, the deflated power method, Algorithm 2 or Algorithm
4);

2. the size n of the A matrix whose eigenpairs have to be computed;

3. the type of matrix to be generated: the driver program can generate 4 types of matrices. Each type has
different spectral properties and will therefore yield a different convergence behavior for the subspace
iteration variants;

4. the dimension m of the invariant subspace;

5. the percentage of the trace needed (only for Algorithm 4, to be expressed as a value between 0 and 1);

We ask you to play with these parameters to compare the three algorithms and also to see their own perfor-
mance according to these different parameters. You have to write a report to explain your results.
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Of course, you have to play with all the parameters, but you need to take a particular care to the size and
the type of the matrices.

In particular, we would like to see some figures which show the eigenvalue distribution of the different types
of matrices (parameter 3), in order to explain the differences of performance of the algorithms according to
the spectrum of A. The spectrum of the tested matrix can be returned by the main program (cf the readme

to know how and where). Feel free to create these figures with Matlab, OpenOffice Calc, or whatever.

We are also expecting you to play with very big matrices.
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