
Tools for Community Detection
Complex Network Theory

Tutorial – 13/12/2021

In this lab, we will use the NetworkX1 package from Python to observe some behaviours of the Modularity
and implement and compare algorithms to perform community detection.

1 The Modularity and the Resolution Limit

In this section, we will observe a nondesirable behaviour of the Modularity, called the resolution limit, and
see how we can mitigate against it.

Exercise 1. Implement a Python function that takes an undirected graph and a community structure2 as
inputs, and returns their Modularity.

The so-called resolution limit means that the Modularity does not consider small communities as “true”
communities. It is often illustrated using ring of cliques graphs, which are a set of cliques (i.e. complete
graphs) linked by a cycle, as illustrated in Figure 1. By increasing the number of cliques, one can observe that,

Figure 1: A ring-clique graph: 6 cliques of size 5.

after a certain number of cliques, the Modularity fails to correctly assess community structures. Namely,
it considers that the community structure with two connected cliques per community is better than the
community structure with one clique per community.

Exercise 2. Observe this behaviour using your implementation of the Modularity and the ring of cliques

function from NetworkX.

To mitigate against this behaviour, a parametrised version of the Modularity has been proposed via the
introduction of the “resolution parameter”, which is a scalar γ ≥ 1 to set up. This parametrised Modularity
can be expressed as

Qγ(G, C) = 1

2m

∑
C∈C

∑
i,j∈C

(
ai,j − γ × dω(i)dω(j)

2m

)
,

using notations from slide 7.

Exercise 3. Adapt your implementation of the Modularity to introduce the resolution parameter, and try
to observe the resolution limit again. What do you conclude?

One measure is known to have no resolution limit, namely the Potts Constant Model, which is a
parametrised measure that can be expressed as:

Pλ(G, C) =
∑
C∈C

∑
i,j∈C

(ai,j − λ) , with λ ∈]0, 1]

Exercise 4. Implement the Constant Potts Model, and see how it behaves with the rings of cliques.
1https://networkx.org/documentation/stable/reference/index.html
2In NetworkX, a community structure is a list of lists: on V = {1, 2, 3, 4, 5}, the community structure C = {{1, 2}, {3}, {4, 5}}

is represented by C = [[1, 2], [3], [4, 5]].
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2 The Louvain Algorithm

We will now use NetworkX to implement the Louvain algorithm, that has been roughly introduced during
the lesson. The pseudo-codes of this algorithm are given in Algorithm 1.

Algorithm 1: Louvain Algorithm

Data: G = (V,E, ω) an undirected weighted graph.
Result: C = {C1, ..., Ck} a partitioning of V .
begin
C ← {{i}, i = 1..|V |} ; /* Start with one community/node. */

while True do
Ccrt ← ONELEVEL(G);
if |Ccrt| == |V | then

break ; /* Nothing has been done in ONELEVEL: end of Louvain. */

end
C ← UPDATE(C,Ccrt) ; /* Not described here. */

G← METAGRAPH(G,Ccrt) ; /* Metagraph on which ONELEVEL is reapplied. */

end

end

METAGRAPH(G = (V,E, ω),C):
begin

Vmeta ← {1, ..., |C|} ; /* Metanodes are the communities. */

Emeta ← {};
for v = 1..|C| do

Emeta ← Emeta ∪ {{v, v}} ; /* We add self loops and their weights. */

ωmeta({v, v})←
∑
i∈Cv

∑
j∈Cv
j∼i

ω({i, j});

for u = v + 1..|C| do
if Cut(Cv, Cu) > 0 then

Emeta ← Emeta ∪ {{v, u}}; /* An edge when 2 cties have non empty cut. */

ωmeta({v, u})←
∑
i∈Cv

∑
j∈Cu
j∼i

ω({i, j}) ; /* Weight is size of the cut. */

end

end

end
return Gmeta = (Vmeta, Emeta, ωmeta);

end

ONELEVEL(G = (V,E)):
begin
C ← {{i}, i = 1..|V |} ; /* Start with one community/node. */

2m←
|V |∑
i=1

dω(i);

increase← True;
while increase do

increase← False ; /* To update when a node changes its community. */

for i = 1..|V | do
Cold ← C ∈ C : i ∈ C;
Cold ← Cold \ i ; /* Removes the current node from its community. */

Ncomm ← {C ∈ C : ∃u ∈ C, u ∼ i}; /* Finds its adjacent communities. */

GAINmax ← 0, Cmax ← Cold;
for Cn ∈ Ncomm do

GAIN ← Cut(Cn, {i})−
1

2m
× dω(i)×

∑
j∈Cn

dω(j); /* Increase of modularity

resulting of adding the current node in this community. */

if GAIN > GAINmax then
GAINmax ← GAIN , Cmax ← Cn;

end

end
Cmax ← Cmax ∪ {i} ; /* Node added to the cty with the best increase. */

increase← Cmax ̸= Cold;

end

end

end

Exercise 5. Prove that the value GAIN is what we want. The fact that the increase of modularity can be
written like this is the reason that makes Louvain as numerically efficient.
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Exercise 6. In the Python file Louvain.py on Moodle, fill the ### TODOs (lines 20, 77, 84 and 88) to get a
functional version of Louvain3.

3 Comparing Algorithms

We would like to compare the Louvain algorithm to other community detection algorithms implemented in
NetworkX, by comparing the correctness of the communities they discover on the LFR benchmark. This
requires a metric to assess the closeness between the discovered community structure and the groundtruth
one.

Exercise 7. Implement a function that takes two community structures and outputs their Adjusted Rand
Index.

The LFR benchmark is implemented in NetworkX and we will use it to assess the algorithms. By varying
the so-called mixing parameter µ, one can control the blurriness of the community structure: µ = 0 returns
a graph in which communities are pairwise disconnected, while one generally considers that there is no
community structure for µ > 0.75.

Exercise 8. Use the function LFR benchmark graph with the parameters as stated below
LFR benchmark graph(500,2,1.5,µ, average degree=5, min community=10,seed=10)

to build a sequence of 7 random graphs with µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. By computing the
Adjusted Rand Index of the community structures returned by the Louvain algorithm4, observe that it is
harder to uncover communities with large values of µ.

Exercise 9. Compare the community structures returned by Louvain algorithm on this benchmark, with
those of some algorithms described here https://networkx.org/documentation/stable/reference/algorithms/
community.html, e.g. greedy modularity communities, and conclude.

3Note the imports of functions volume and cut that may be useful.
4This will require you to carefully read the doc of the LFR function to understand how to extract the groundtruth community

structure of the generated graph.
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